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Characteristic Impedance of a Coaxial System
Consisting of Circular and
Noncircular Conductors

SHENG-GEN PAN

Abstract — A family of transmission lines is based on a circular conduc-
tor and a noncircular conductor. Two new types of equivalent eccentric
coaxial lines, which give smooth transition between extremes of a small
wire and a wire near contact, are presented. The results obtained are very
simple analytical expressions which will be useful for fast computation or
for the CAD of coaxial components. The accuracy of the expressions is
confirmed by comparison with accurate numerical data.

NOMENCLATURE

Z, Characteristic impedance of a transmission line.

r  Radius of a circle circumscribed about an inner conductor.

R Radius of a circle inscribed in an outer conductor.

r,  Effective radius of an inner conductor.

R, Effective radius of an outer conductor.

I,=(R,—r)/(R~r)=normalized effective distance between
inner and outer conductors.

The medium is taken to be free space.

I. INTRODUCTION

The determination of the characteristic impedance of a coaxial
system consisting of a circular conductor and a noncircular
conductor has been the subject of numerous treatments appear-
ing during the past 40 years [1]-[15]. When the geometrical
parameters of a coaxial transmission line are specified, we may
calculate its impedance (or capacitance) using three approaches:
1) conformal transformation; 2) numerical techniques; and 3)
graphically approximate methods, which identify an equivalent
coaxial transmission line whose impedance is well known and is
expected to be similar to that of the one under investigation. The
third method has been used extensively to produce an equivalent
circular coaxial line at small ratios of inner and outer conductors
[2], [3]. However, this approach does not take into account the
interaction of inner and outer conductors; thus the equivalent
circular coaxial line is not a satisfactory approximation. Some
improvements were made by using conformal transformation
techniques and taking the arithmetic or geometric means of the
upper and lower bounds to the size (or the upper and the lower
bounds on the characteristic impedance) [7]. However, this re-
quires rather tedious calculations to determine the bounds and
only applies to some particular configurations. Recently an
equivalent eccentric coaxial line was proposed and an elementary
formula was presented for the determination of the characteristic
impedance of a coaxial line consisting of a noncircular outer
conductor and a circular inner conductor [15]. However, the
formula has the maximum absolute error of the characteristic
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impedance for moderate ratios of inner and outer conductors,
which is not desirable for practical use.

In this paper, we further develop the approximate graphical
method and present two new types of equivalent eccentric coaxial
lines, whose eccentricities vary with the ratio of inner and outer
conductors, for a coaxial system consisting of circular and non-
circular conductors. The new equivalent lines give smooth transi-
tion between extremes of a small wire and a wire near contact.
The results obtained are very simple analytical expressions which
will be useful for fast computation of the characteristic imped-
ance or for the CAD of coaxial components. In comparison with
the existing data, all our results are as accurate as the data
available in the literature. Some results are believed to be better
than those reported in the literature or are presented for the first
time.,

II. THEORY AND METHOD

A. The Transformation of Simple Connected Regions by an
Infinite Series

The interior of a unit circle in the { plane can be bonformally
mapped into the interior of a simple connected region in the w
plane by an infinite series of the form [16]

M)

©
W= Z an§1+n
n=0

where

a,=a,+ib,.

(2)
If |§] =1, the first term in (1) is predominant, and a circle with
radius r <1 in the w plane will map into an approximate circle
in the |{| plane with the radius

r

r=— 3)

|0‘0]‘

When the region in the w plane has p axes of symmetry, b, in
(2) is zero and (1) can be rewritten as

(4)
The exterior of a unit circle in the || plane can be conformally

mapped onto the exterior of a simply connected region in the w
plane by an infinite series of the form [16]

w=3 B
n=20

0
WY gt
n=0

(%)

where

B.=c,tid,.

(6)
If |§| > 1, the first term in (5) is predominant, and a circle with
radius R >1 in the w plane will map into an approximate circle
in the ¢ plane with the radius

R=2 (7
" 1Bol”

When the region in the w plane has p axes of symmetry, d, in
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(6) is zero and (5) can be rewritten as

o0
w= Y ¢
n=0

(®)

The coefficients «, and 8, can be systematically determined
by numerical methods (successive approximations, Melentiev’s
method, etc. [16]). The coefficient «, or B, can also be obtained
by means of the closed analytic function which conformally maps
a unit circle in the { plane into a simply connected region in the
w plane.

B. Basic Properties of the Effective Radius of a Coaxial Conductor

The noncircular conductor of a coaxial line can be replaced by
a concentric circular one with an effective radius. From the
viewpoint that the total capacitance of a coaxial transmission line
is composed of the parallel connection of the capacitance of
every segment of the boundary, we have the following interesting
conclusion about the properties of the effective radius of a
coaxial conductor: The normalized effective distance /, of a
coaxial system consisting of circular and noncircular conductors
reduces monotonically as the ratio r/R increases; that is, the
effective radius R, of the noncircular outer conductor decreases
and the effective radius r, of the noncircular inner conductor
increases as the ratio /R increases.

The proof of the above conclusion is obvious from physical
considerations. As the ratio r/R increases, the contribution of
the capacitances of the nearer boundaries to the total capacitance
of a coaxial line rises and then the normalized effective distance
I, decreases. The above conclusion has been confirmed by check-
ing the eccentrical coaxial line.

Moreover, if one of two conductors of a coaxial transmission
line is chosen as the reference boundary, the normalized effective
distance /, between the reference boundary and the equivalent
conformal boundary of the other conductor is a monotonically
decreasing function of r/R.

C. New Type of Equivalent Coaxial Lines

When the ratio #/R — 0, the effective radius of a noncircular
outer conductor is given from (7) with close approximation by

R,y =lap|R (9)

where |ay] is usually referred to as a shield factor, and the
effective radius of a noncircular inner conductor is given from (8)
with close approximation by

reo=|BOIr' (10)

Generally, it 1s difficult to solve for the effective radius R, or
r, exactly as the ratio /R increases for an arbitrarily irregular
coaxial conductor. Considering the basic properties of the effec-
tive radius given above, we propose to use two eccentric coaxial
lines whose eccentricities vary with the ratios of inner and outer
conductors as the equivalent coaxial line. One is for a coaxial
system consisting of a noncircular outer conductor and a circular
inner conductor, and the other is for a coaxial system consisting
of a circular outer conductor and a noncircular inner conductor.
At the extreme of a small wire (/R — 0), the eccentricities of the
equivalent lines are zero and the equivalent lines become circular
coaxial lines, with the effective radius R,, in (9) for a noncir-
cular outer conductor and r,, in (10) for a noncircular inner
conductor.

At the extreme of a large wire near contact (/R —1), the
inner and outer conductors of the equivalent lines should be near
contact. For the case #/R =1, the eccentricity of the equivalent
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lines reaches the maximum value, and can be determined easily
from the geometrical configuration of a eccentric coaxial line. In
particular, the maximum eccentricities of the equivalent lines are

1
Ema":(l_m) (11)

for a coaxial system consisting of a noncircular outer conductor
and a circular inner conductor, and

Emax=1_ lBOl (12)

for a coaxial system consisting of a circular outer conductor and
a noncircular inner conductor. It will be shown in Section III that
the characteristic impedances obtained from the equivalent line
with the maximum eccentricity in (11) are very close to Wheeler’s
limiting results for polygons [4].

Between the extremes of a small wire and one near contact, we
may choose the eccentricity of an equivalent eccentric line such
that its effective radius is very close to that of the one under
investigation. We use |a,| and |f,| to indicate the departure of a
noncircular conductor from a circular one. Thus, the eccentrici-
ties of the equivalent line should be a function of ||, |5,|, and
r/R.

Although it is difficult to solve for the effective radius of a
coaxial conductor of any irregular cross section at any ratio r/R,
there are some combinations of circular and noncircular conduc-
tors whose effective radii can be evaluated exactly. These can be
used to determine the function of the eccentricity of the equiv-
alent line with the variables |ay), |B,]. and r/R by means of
optimization techniques, such as optimum seeking methods.

Once such a function is determined, the characteristic imped-
ance at any ratio r/R of a coaxial system consisting of circular
and noncircular conductors can be easily calculated by the for-
mula for the determination of the characteristic impedance of the
eccentric coaxial line. In the following, two such functions will be
given. One is for a noncircular outer conductor and the other is
for a noncircular inner conductor.

III. NONCIRCULAR OUTER CONDUCTOR

By the optimum seeking method, the eccentricity of the equiv-
alent eccentric line for a coaxial system consisting of a noncir-
cular outer conductor and a circular inner conductor is chosen
and is written in terms of the variables |ay| and /R as

1
El(r/R)z 1—-1a—0|)(r/R)F1(r/R) (13)
where
2 7 \10/leol
Fl(r/R)zl(X_(ﬂ[l—(E) ] (]_4)

Then, the formula for the determination of the characteristic
impedance of this kind of coaxial transmission line is given by

Zy=59.952In[ G +{/(¢?—1) | (15)
where
1 2r elR (1- E(r/R))
G_E{MMR+ "[1—a(vRﬂb————7;———”.

(16)

To show the validity of the formula given above, we consider
some typical examples. Fig. 1 shows a family of outer conductor
cross sections that are regular polygons. The variable @, for
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Fig. 1. Outer conductor of }egular—polygon cross section for (a) N=1, (b)
N=2,(c) N=3,(d) N=4,and (¢) N =6.
TABLE 1
CHARACTER.ISTIC IMPEDANCE FOR. N-REGULAR- POLYGON OUTER
CONDUCTOR
N 1 2 &
r/Ripresent Bunston prebent Wheeler jpresent

Seshagiri

work i1, p.lé
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TABLE 1I
N 1 z 3 4 6 8
triangie |trough
QG 1.1678 [1.0787 |1.0576 [1. 0220
1/N [ 0. 167
I~ e o. 0.190 | 0.147

polygons can be formulated in terms of Gamma function [3],
[17]:
2
1‘(1 4 _)
n

—I7-
1‘2(1+—)
n

Substituting (17) into (13)-(15) yields simple analytical expres-
sions for the characteristic impedance of a coaxial system consist-
ing of N regular outer conductors and a circular inner conductor.
Table I shows a comparison between the characteristic imped-
ance reported in the literature and that obtamed usmg these
simple expressions.

It is shown in this table that the agreement is excellent in all
cases. In - particular, the mammum deviation is less than 0.2
percent in the range r/R < 0.5 and less than 0.7 percent in the
range /R < 0.95. At the extreme of large wires near contact, we
find, by taking the limit of (15), that

R
)
A r

ag =

(17)

(18)

1
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Z, =59.952
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Fig. 2. Outer conductor of nonregular-polygon cross section.
TABLE III
CHARACTERISTIC IMPEDANCE FOR RECTANGULAR OUTER
CONDUCTOR

a/R 1.5

present  lin Fan
work L1, p.66] L1431
191, 9%
150, 46

present . Lin
vori [y pobb)
193, 6

Farn
L1417

14,68
G. 81
A4.12 4,501

1%.14 1 3
1. 10 10,46 : E
.19 ] 448 490

TABLE IV
CHARACTERISTIC IMPEDANCE FOR TROUGH OUTER CONDUCTOR
n/R 1/4 172 /4
present Chisholm|present Wheeler Chisholmfpresent Chisholm
iR L1, p.741 [471 L1, p.vad -k
. . 188.8Y

Equatlon (18) may be compared to Wheeler’s hmltmg result for
polygons [4]:

) (19)

To the extent that 1/N'=/1-1/]ay|, (18) and (19) give the
same results and the comparison is shown in Table II. As can be
seen, the results are very close in most cases. Fig. 2 shows cross
sections which are nonregular polygons.

The variable a,, for the rectangle is given by [2], [3]

I3

4 -4
adgy =;exp ——Fz)__‘_l—

(20)

and a, for the trough is given by [1], [2]
4  (ah

= —tanh{ —|. 21).

tanh( " ) (21)

The results obtamed by subsntutmg (20) and (21) into (13)- (15)
are compared with earlier published results in Tables IIT and IV.
Thiese tables show that the present values are in excellent agree-
ment’ with those'of Lin and Chisholm for r/R < (.7. At the
extreme of a large wire near contact, we find that the present
results are closer to Wheeler’s limiting results for polygons of (19)
than those of Lin and Chisholm. So our present results are
thought to be better than those quoted by Gunston [1]. .

Fig. 3 shows a_ elliptical cross section,” which is ‘a family ‘of
simple closed curves depending on on¢ parameter A. The equa-
tion of the ellipse can be expanded in a power series in  the
parameter A and the mapping funct1011 can be found by succes-
sive approximations.
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Fig. 3. Outer conductor of elliptical cross section.
TABLE V
CHARACTERISTIC IMPEDANCE FOR ELLIPTICAL OUTER CONDUCTOR
as Ly la's o B =]

:M

IENEYE FEETE DA N FIVPREN ERETENE IV F )
. 19&. 71 148, 2o la%0. 588 [1h1. /74
[ Huslo | Blu4 ) g4.o0 R -
Wt WL I P B SUD BLBL S4.93
G, 7 IRCAE TR IS JRPZ R B VAE =1 B LR A1
P 120,75 0 13,703 14,991 189.al

The parameter a, for an ellipse is given by

23
ag=vV1+A|l-—+—X (22)

8 128
where the semi-axes ¢ and b are (1—A)~%2 and (1+A)"1/2,
respectively. The accurdcy of (22) is close to the fifth power of A.
For the extreme case (A =1), the ellipse becomes parallel planes
and the relative error of (22) is only about 0.2 percent.

When (22) is substituted into (13)-(15), we obtain the formula
for the determination of the characteristic impedance. The results
for various values of the ratios a /b and r/R are summarized in
Table V. Comparable results are not available in the literature.

IV. NONCIRCULAR INNER CONDUCTOR

By the optimum secking method, the eccentricity of the equiv-
alent eccentric line for a coaxial system consisting of a circular
outer conductor and a noncircular inner conductor is chosen and
written in terms of the variables || and r/R as

B g(r/R) Fa(r/R)
EG/R) = (- 1g)oss+ ) (%)

(23)

10 R
where
7180
g(r/R)=1—(E) (240)
F(r/R) = (3yBl)" 7", (24b)

Then, the formula for the determination of the characteristic
impedance for this kind of coaxial transmission line is given by

Z,=59.952I[ G +/(6*-1) |, (25)

where

G=1{ 2187

R
5 R +W[1~E2(F/R)][l 5

(1= E(/R) }}

(26)
Fig. 4 shows a family of inner conductor cross sections that are
regular polygons.

(@) (G)]

©) (d)
Fig. 4. Inner conductor of regular-polygon cross section for (a) N =2, (b)
N=3(c) N=4,and (d) N=6
TABLE VI
CHARACTERISTIC IMPEDANCE FOR N-REGULAR-POLYGON INNER
CONDUCTOR
T B el
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For polygons ¢, can be formulated in terms of Gamma func-
tion [3}, [17):

1 T
nF2(1+ —) sin —
n n

2
WF(1+_)
n

Substituting (27) into (23)-(25) yields simple analytical expres-
sions for the characteristic impedance of a coaxial system consist-
ing of a circular outer conductor and an N-regular polygon inner
conductor. Table VI shows a comparison between the character-
istic impedance reported in the literature and that obtained using
these simple expressions. As can be seen from the table, the
agreement is excellent in most cases. In particular, the maximum
deviation is less than 0.3 percent in the range »/R < 0.9 for
N=2, 4, and 6. For N =3, our results are almost 1.5 Q greater
than those of Sheshadri for different r/R ratios [12]. By small
wire theory [2], the results reported in this paper are found to be
more accurate than those reported by Sheshadri.

Co =

(27)

V. CONCLUSIONS

A new type of equivalent eccentric coaxial line has been
presented for general coaxial systems. The elementary formulas
for characteristic impedance are given in a form that can be
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implemented easily on a pocket calculator. In terms of accuracy,
the described formulas represent a considerable improvement on
the foundation of coaxial component design and are fully com-
patible with the needs of modern computer-aided microwave
coaxial circuit design.
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Mode Stability of Radiation-Coupled
Interinjection-Locked Oscillators for Integrated
Phased Arrays

KARL D. STEPHAN, MEMBER, IEEE, AND SONG-LIN YOUNG

Abstract — An array of coupled oscillators can synthesize the microwave
phase relationships needed for phased arrays by means of a technique
known as interinjection locking. The mode required must be stable, and a
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general approach for evaluating mode stability and predicting frequency
and phase relationships is applied to an experimental two-element 10 GHz
array. Radiation coupling between the two oscillators leads to coherent
operation, and the simple theory developed successfully predicts the sys-
tem’s behavior over a wide range of interoscillator distances.

I. INTRODUCTICN

Recently a novel method of phase generation and control for
phased arrays has been developed. The technique, described as
interinjection locking [1], [2] or parasitic injection locking [3],
consists in driving each element in a phased antenna array with
its own directly coupled oscillator. Suitable coupling between the
antenna elements causes the system as a whole to run coherently,
synthesizing the properly phased drive for each clement. Rather
than requiring a phase shifter for each element, the system can be
steered by a few externally controlled injection inputs at strategic
points. The difficulties and losses encountered when a phase-
shifting circuit must be provided for each element could be
greatly reduced by applying this technique to microwave, and
especially millimeter-wave, integrated circuits in which phase
shifter losses rise rapidly with increasing frequency.

A system of N nonlingar oscillators can in principle operate in
any one of N single-frequency moces, and even more if
multiple-frequency operation is considered. Typically only one of
these modes meets the phased array requirements, so some means
must be established for evaluating mode stability in systems of
coupled oscillators. In this paper we analyze two oscillators
coupled solely by means of the free-space interaction between
their respective antenna elements. The oscillators are modeled as
energy-storing L C tank circuits in parallel with voltage-depen-
dent negative conductances. A simplified far-field slot antenna
model is used to derive the mutual admittance of the two
antennas. Even-odd mode analysis yields the normal modes of
the system, and a theorem from averaged potential theory is used
to determine which mode is stable. Two microstrip Gunn diode
oscillators were built to verify the essential features of the model.
Oscillator frequencies, relative phases, and radiation patterns
were measured as functions of the interantenna distance, and the
periodic alternation of modes with distance predicted by theory
was confirmed quite well. Although the small system studied is of
limited practical use, it has many features in common with larger
practical interinjection-locked systems.

II. THEORY

Most studies of multiple-device oscillators, such as Kurokawa’s
[4], assume that the primary energy storage mechanism is a
resonant-structure mode common to all the devices, with rela-
tively little energy stored within each device’s associated circuitry.
In contrast to this, the interinjection-locking approach begins
with self-sufficient oscillators capable of independent operation,
but susceptible to injection locking with a signal applied to their
outputs. In Fig. 1 two such oscillators are modeled as parallel
equivalent circuits consisting of L-C tanks and voltage-depen-
dent negative conductances — G, (v). For most purposes a sim-
ple cubic function — G, (v)=—gv+ g’ suffices to model
devices in systems with relatively small levels of injection power
[5]. Circuit losses are modeled by conductances G;, and in the
absence of external loads (1, = I, = 0), each circuit will achieve a
steady-state oscillation at a frequency w, =1 /VLC and ampli-
tude ¥, such that —G,(¥;)+ G, =0. In the discussion that
follows, the oscillators are assumed to have identical characteris-
tics.
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