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Short Papers _

Characteristic Impedance of a Coaxiaf System

Consisting of Circular and

Noncircular Conductors

SHENG-GEN PAN

Abstract — A family of transmission lines is based on a circnlar conduc-

tor and a noncircnfar condnctor. Two new types of equivalent eecentric

coaxial lines, which give smooth transition between extremes of a small

wire and a wire near contact, are presented. The results obtained are very

simple analytical expressions which will be useful for fast computation or
for the CAD of coaxial components. The accuracy of the expressions is

confirmed by comparison with accurate numerical data.

NOMENCLATURE

Z. Characteristic impedance of a transmission line.

r Radius of a circle circumscribed about an inner conductor.
R Radius of a circle inscribed in art outer conductor.

r. Effective radius of an inner conductor.

Re Effective radius of an outer conductor.
1,= (R, – r, )/( R – r) = normalized effective distance between

inner and outer conductors.

The medium is taken to be free space.

I. INTRODUCTION

The determination of the characteristic impedance of a coaxial

system consisting of a circular conductor and a noncircular

conductor has been the subject of numerous treatments appear-

ing during the past 40 years [1]–[15]. When the geometrical

parameters of a coaxial transmission line are specified, we may

calculate its impedance (or capacitance) using three approaches:

1) conformal transformation; 2) numerical techniques; and 3)

graphically approximate methods, which identify an equivalent

coaxial transmission line whose impedance is well known and is

expected to be similar to that of the one under investigation. The

third method has been used extensively to produce an equivalent

circular coaxial line at small ratios of inner and outer conductors

[2], [3]. However, this approach does not take into account the

interaction of inner and outer conductors; thus the equivalent

circular coaxial line is not a satisfactory approximation. Some

improvements were made by using conformal transformation

techniques and taking the arithmetic or geometric means of the

upper and lower bounds to the size (or the upper and the lower

bounds on the characteristic impedance) [7]. However, this re-

quires rather tedious calculations to determine the bounds and

only applies to some particular configurations. Recently an

equivalent eccentric coaxial line was proposed and an elementary

formula was presented for the determination of the characteristic

impedance of a coaxial line consisting of a noncircular outer

conductor and a circular inner conductor [15]. However, the

formula has the maximum absolute error of the characteristic
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impedance for moderate ratios of inner and outer conductors,

which is not desirable for practicaf usc.

In this paper, we further develop the approximate graphical

method and present two new types of equivalent eccentric coaxiaf

lines, whose eccentricities varj with the ratio of inner and outer

conductors, for a coaxiaf system consisting of circular and non-

circular conductors. The new equivalent lines give smooth transi-

tion between extremes of a small wim and a wire near contact,

The results obtained are very simple analytical expressions which

will be useful for fast computation of the characteristic imped-

ance or for the CAD of coaxial components. In comparison with

the existing data, all our results are as accurate as the data

available in the literature. Some results are believed to be better

than those reported in the literature or are presented for the first

time.

II. THEORY AND lVfETHOD

A. The Transformation of Simple Comqected Regions by an

Infinite Series

The interior of a unit circle in the { plane can be conformably

mapped into the “interior of a simple connected region in the w

plane by an infinite series of the form [16]

~=()

where

a~=a~+ibn.

(1)

(2)

If I(I -=<1, the first term in (1) is preclorninant, and a circle with

radius r <<1 in the w plane will map into an approximate circle

in the I(1 plane with the radius

r
r!=—.

Iffol
(3)

When the region in the w plane has p axes of symmetry, bn in

(2) is zero and (1) can be rewritten as

(4)

The exterior of a unit circle in the 1{1plane can be conformably

mapped onto the exterior of a simply connected region in the w

plane by an infinite series of the form [16]

(5)
~=()

where

fi~=cn+idn. (6)

If 1{1>>1, the first term in (5) is predominant, and a circle with

radius R >>1 in the w plane will map into an approximate circle

in the { plane with the radius

R

“=m”
(7)

When the region in the w plane has p axes of symmetry, d. in
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(6) is zero and (5) can be rewritten as

(8)
~=()

The coefficients an and ,ffH can be systematically determined

by numerical methods (successive approximations, Melentiev’s

method, etc. [16]). The coefficient a. or /?O can also be obtained

by means of the closed analytic function which conformably maps

a unit circle in the { plane into a simply connected region in the

w plane.

B. Basic Properties of the Effective Radius of a Coaxial Conductor

The noncircular conductor of a coaxiaf line can be replaced by

a concentric circular one with an effective radius. From the

viewpoint that the totaf capacitance of a coaxiaf transmission line

is composed of the parallel connection of the capacitance of

every segment of the boundary, we have the following interesting

conclusion about the properties of the effective radius of a

coaxial conductor: The normalized effective distance 1. of a

coaxial system consisting of circular and noncircular conductors

reduces monotonically as the ratio r/R increases; that is, the

effective radius R. of the noncircular outer conductor decreases

and the effective radius r, of the noncircular inner conductor

increases as the ratio r/R increases.

The proof of the above conclusion is obvious from physical

considerations. As the ratio r/R increases, the contribution of

the capacitances of the nearer boundaries to the total capacitance

of a coaxial line rises and then the normalized effective distance

1, decreases. The above conclusion has been confirmed by check-

ing the eccentrical coaxial line.

Moreover, if one of two conductors of a coaxial transmission

line is chosen as the reference boundary, the normalized effective

distance 1, between the reference boundary and the equivalent

conformaf boundary of the other conductor is a monotonically

decreasing function of r/R.

C. New Type of Equivalent Coaxial Lines

When the ratio r/R ~ O, the effective radius of a noncircular

outer conductor is given from (7) with close approximation by

R,O=IIXOIR (9)

where la. I is usually referred to as a shield factor, and the

effective radius of a noncircular inner conductor is given from (8)

with close approximation by

r=.0 l~olr. (lo)

Generally, it is difficult to solve for the effective radius R ~ or

r, exactly as the ratio r/R increases for an arbitrarily irregular

coaxiaf conductor. Considering the basic properties of the effec-

tive radius given above, we propose to use two eccentric coaxial

lines whose eccentricities vary with the ratios of inner and outer

conductors as the equivalent coaxiaf line. One is for a coaxial

system consisting of a noncircular outer conductor and a circular

inner conductor, and the other is for a coaxiaf system consisting

of a circular outer conductor and a noncircular inner conductor.

At the extreme of a small wire (r/R -+ O), the eccentricities of the

equivalent lines are zero and the equivalent lines become circular

coaxial lines, with the effective radius R ~. in (9) for a noncir-

cular outer conductor and r,. in (10) for a noncircular inner

conductor.

At the extreme of a large wire near contact (r/R+ 1), the

inner and outer conductors of the equivalent lines should be near

contact. For the case r/R =1, the eccentricity of the equivalent

lines reaches the maximum value, and can be determined easily

from the geometrical configuration of a eccentric coaxiaf line. In

particular, the maximum eccentricities of the equivalent lines are

E ma
()

= l–J-
l~ol

(11)

for a coaxial system consisting of a noncircular outer conductor

and a circular inner conductor, and

Emax =1– l/301 (12)

for a coaxial system consisting of a circular outer conductor and

a noncircular inner conductor. It will be shown in Section III that

the characteristic impedances obtained from the equivalent line

with the maximum eccentricity in (11) are very close to Wheeler’s

limiting results for polygons [4].

Between the extremes of a small wire and one near contact, we

may choose the eccentricity of an equivalent eccentric line such

that its effective radius is very close to that of the one under

investigation. We use 1a. 1and 1/301to indicate the departure of a

noncircular conductor from a circular one. Thus, the eccentric-

ities of the equivalent line should be a function of \a. 1, I~. 1,and

r/R.
Although it is difficult to solve for the effective radius of a

coaxial conductor of any irregular cross section at any ratio r/R,
there are some combinations of circular and noncircular conduc-
tors whose effective radii can be evaluated exactly. These can be
used to determine the function of the eccentricityy of the equiv-
alent line with the variables laO1, 1~01,and r/R by means of

optimization techniques, such as optimum seeking methods.

Once such a function is determined, the characteristic imped-

ance at any ratio r/R of a coaxial system consisting of circular

and noncircular conductors can be easily calculated by the for-

mula for the determination of the characteristic impedance of the

eccentric coaxial line. In the following, two such functions will be

given. One is for a noncircukr outer conductor and the other is

for a noncircular inner conductor.

III. NONCIRCULAR OUTER CONDUCTOR

By the optimum seeking method, the eccentricity of the equiv-

alent eccentric line for a coaxiaf system consisting of a noncir-

cular outer conductor and a circular inner conductor is chosen

and is written in terms of the variables Ia. 1and r/R as

()El(r/R) = 1–; (r/R) F1(r’~)

where

[ rr”’’a”’l
F,(r/R) =-& 1– ~

(13)

(14)

Then, the formula for the determination of the characteristic

impedance of this kind of coaxial transmission line is given by

Z.= 59.9521n[G +~~] (15)

where

G=i ( 2r
—+

2 laolR [ 1}
~[l-E1( r/R)] 1- ‘l- E’$r’R)) .

(16)

To show the validity of the formula given above, we consider

some typical examples. Fig. 1 shows a family of outer conductor

cross sections that are regular polygons. The variable a~ for



IEEE TRANSACTIONS ON MICRoWAVE THEoRY AND TECHNIQUES, VOL. 36, NO. 5, MAY 1988 919

--l0 ‘-i

—

(a) (b)

(c) (d) (e)

Fig. 1. Outer conductor of regular-polygon cross section for (a) N= 1, (b)

iV=2, (c) N=3, (d) N=4, and(e) iV=6.

TABLE II

I N 1 ,.,

‘ ~B
4 4 w

Lr, dngle t, ,. L,<JI,

i @a z 1.2/22 1.112> 1.1iJ78 ] .<1-78? 1.102.-76 1.<.122 <.1

l,N 1 (., .7, 0. .,-,:, ,., , ..: ~...> ,., ,,:,, ,-). 1 /,, <). ii,.;’

IJRJ7C.l? .46, 0. -54!2 (). :,79 ,., ~:., ,., .190 IJ. 147

polygons can be formulated in terms

[17]:

of Gamma function [3],

()r I+?
n~. =
I\”>’ (17)

()r2 l+:
n

Substituting (17) into (13)–(15) yields simple analytical expres-

sions for the characteristic impedance of a coaxial system consist-

ing of N regular outer conductors and a circular inner conductor.

Table I shows a comparison between the characteristic imped-

ance reported in the literature and that obtained using these

simple expressions.

It is shown in this table that the agreement is excellent in all

cases. In particular, the maximum deviation is less than 0.2

percent in the range r/R< 0.5 and less than 0.7 percent in the

range r/R <0.95. At the extreme of large wires near contact, we

find; by taking the limit of (15), that

Ipq la
(a) (b)

Fig. 2. Outer conductor of nonregular-polygon cross section.

Equation (18) may be compared to Wheeler’s limiting result for

polygons [4]:

m59.952
zo~— 2~-–1 .

N r
(19)

To the extent that l/N= j-i, (18) and (19) give the

same results and the comparison is shcwn in Table II. As can be

seen, the results are very close in most cases. Fig. 2 shows cross

sections which are nonregular polygons.

The variable a. for the rectangle is given by [2], [3]

4

.[ )– ‘4
~. . — e-p -—

‘7

()

9T1Z

exp ~; + 1

and UO for the trough is given by [1], [2]

4

()

7Th

ao=—tanh ~- .
’77

(20)

(21)

The results obtained by substituting (20) and (21) into (13)-(15)

are commwed with earlier tmblished results in Tables III and IV.

These t;bles show that th; present values are in excellent agree-

ment with those of Lin and Chisholm for r/R <0.7. At he

extreme of a large wire .neti contact, we find that the present

results are closer to Wheeler’s limiting results for polygons of (19)

than those of Lin. and Chisholm. So our present results are

thought to be better tkn those quoted by Gunston [1].

Fig. 3 shows a elliptical cross section,’ which is a family of

simple closed curves depending on one parameter X. The equa-

tion of the ellipse can be expanded in a power series in the

parameter X and the mapping function can be found by succes-

sive approximations.
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Fig. 3. Outer conductor of elliphcal cross section

TABLE V

TheparameteraO foranellipse isgivenby

(22)

where the semi-axes a and b are (1 – A)–li2 and (1+ k)–1/2,

respectively. The accuracy of (22) is close to the fifth power of A.

For the extreme case (k= 1), the ellipse becomes parallel planes

and the relative error of (22) is only about 0.2 percent.

When (22) is substituted into (13)-(15), we obtain the formula

for the determination of the characteristic impedance. The results

for various values of the ratios a/b and r\R are summarized in

Table V. Comparable results are not available in the literature.

IV. NONCIRCULAR INNER CONDUCTOR

By the optimum seeking method, the eccentricity of the equiv-

alent eccentric line for a coaxial system consisting of a circular

outer conductor and a noncircular inner conductor is chosen and

written in terms of the variables I/?O] and r\R as

lfil]q;jF2(/~) (23,
E,(r/R) = (1– l~ol)[0.66+ —

where

Then,

r 80

()
g(r/R)=l– ~ (24a)

F,(r/R) = (3 JBJ)[’-(’’R5]5]. (24b)

the formula for the determination of the characteristic

impedance for this kind of coaxial transmission line is given by

Z, =59.9521n[G+(~] , (25)

where

(1 21/301r R
G=i —

[

(1- E,(r/R)) 1}—[l--E, (r/R)] 1- z .
R + l~olr

(26)

Fig. 4 shows a family of inner conductor cross sections that are

regular polygons.

(a) (b)

. . . ,

Fig. 4.

(c) (d)

Inner conductor of regular-polygon cross section for (a) N = 2, (b)

N=3, (c) N=4, and(d) AJ=6

TABLE VI

CHARACTERISTIC IMPEDANCE FOR N-REGULAR-POLYGON INNER

I
,,.:,

! I :1. + .1. .!2 ,1.4? .,1. ,,-,

!., . ,, 1,/,1:, I-*. c, :!, .,,., j ,. ~?~.,
!,. ,.:., 1 ,1.:.4 l’+.,,tt

For polygons co can be formulated in terms of Gamma func-

tion [3], [17]:

()1
nI’2 1+— sin:

n n
co =

2“

()

(27)

~r l+—
n

Substituting (27) into (23)–(25) yields simple analytical expres-

sions for the characteristic impedance of a coaxial system consist-

ing of a circular outer conductor and an N-regular polygon inner

conductor. Table VI shows a comparison between the character-

istic impedance reported in the literature and that obtained using

these simple expressions. As can be seen from the table, the

agreement is excellent in most cases. In particular, the maximum

deviation is less than 0.3 percent in the range r,zR <0.9 for

N = 2, 4, and 6. For N = 3, our results are almost 1.5 Q greater

than those of Sheshadri for different r/R ratios [12]. By small

wire theory [2], the results reported in this paper are found to be

more accurate than those reported by Sheshadri.

V. CONCLUSIONS

A new type of equivalent eccentric coaxial line has been

presented for general coaxial systems. The elementary formulas

for characteristic impedance are given in a form that can be
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implemented easily on a pocket calculator. In terms of accuracy,

the described formulas represent a considerable improvement on

the foundation of coaxial component design and are fully com-

patible with the needs of modern computer-aided microwave

coaxial circuit design.
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Mode Stability of Radiation-Coupled

Interinjection-Locked Oscillators for Integrated

Phased Arrays

KARL D. STEPHAN, MEMBER, IEEE, AND SONG-LIN YOUNG

Abstract — An array of coupled oscillators can synthesize the microwave

phase relationships needed for phased arrays by means of a technique

known as interinjection loc~ng. The mode reqnired must be stable, and a
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general approach for evahrating mode stability and predicting frequency

and phase relationships is appfied to an experimental two-element 10 GH2

array. Radiation coupfing between the two oscillators leads to coherent

operation, and the sin@e theory developed successfully predicts the sys-

tem’s behavior over a wide range of interoseillator distances.

I. INTRODUCTICIN

Recently a novel method of phase generation and control for

phased arrays has been developed. The technique, described as

intennjection locking [1], [2] or parasitic injection locking [3],

consists in driving each element in a phased antenna array with

its own directly coupled oscillator. Suitable coupling between the

antenna elements causes the system as a whole to run coherently,

synthesizing the properly phased drive for each element. Rather

than requiring a phase shifter for each element, the system cart be

steered by a few externally controlled injection inputs at strategic

points. The difficulties and losses encountered when a phase-

shifting circuit must be provided for each element could be

greatly reduced by applying this technique to microwave, and

especially millimeter-wave, integrated circuits in which phase

shifter losses rise rapidly with increasing, frequency.

A system of N nonlinear oscillators can in principle operate in

any one of N single-frequency mocles, and even more if

multiple-frequency operation is considered. Typically only one of

these modes meets the phased array requirements, so some means

must be established for evaluating mode stability in systems of

coupled oscillators. In this paper we analyze two oscillators

coupled solely by means of the free-space interaction between

their respective antenna elements. The oscillators are modeled as

energy-storing L – C tank circuits in parallel with voltage-depen-

dent negative conductance. A simplified far-field slot antenna

model is used to derive the mutuaf admittance of the two

antennas. Even-odd mode analysis yields the normal modes of

the system, and a theorem from averaged potential @eory is used

to determine which mode is stable. Two microstrip Gunn diode

oscillators were built to venf y the essentml features of the model.

oscillator frequencies, relative phases, and radiation patterns

were measured as functions of the interantenna dist~ce, and the

periodic alternation of modes with distance predicted by theory

was confirmed quite well. Although the small system studied is of

limited practical use, it has many features in common with larger

practicaf interinjection-locked systems.

II. THEORY

Most studies of multiple-device oscillators, such as Kurokawa’s

[4], assume that the primary energy storage mechanism is a

resonant-structure mode common to all the devices, with rela-

tively little energy stored within each device’s associated circuitry.

In contrast to this, the interinjection-loclcing approach begins

with self-sufficient oscillators capable of independent operation,

but susceptible to injection locking with a signaf applied to their

outputs. In Fig. 1 two such oscillators are modeled as parallel

equivalent circuits consisting of L – C tanks and voltage-depen-

dent negative conductance – G~ ( u ). For most purposes a sim-

ple cubic function – G~ ( u) = – glv + g3u3 suffices to model

devices in systems with relatively small Levels of injection power

[5]. Circuit losses are modeled by conductmces G~, and in the

absence of external loads (11 = 12 = O), each circuit will achieve a

steady-state oscillation at a frequency (Jo = I/@ and ampli-

tude VO such that – G~ ( VO)+ G1 = O. In the discussion that

follows, the oscillators are assumed to have identical characteris-

tics.
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